Spanning 3-connected index of graphs
نویسندگان
چکیده
For an integer s > 0 and for u, v ∈ V (G) with u = v, an (s; u, v)-pathsystem of G is a subgraph H of G consisting of s internally disjoint (u, v)-paths, and such an H is called a spanning (s; u, v)-path system if V (H) = V (G). The spanning connectivity κ∗(G) of graph G is the largest integer s such that for any integer k with 1 ≤ k ≤ s and for any u, v ∈ V (G) with u = v, G has a spanning (k; u, v)-pathsystem. Let G be a simple connected graph that is not a path, a cycle or a K1,3. The spanning k-connected index of G, written sk(G), is the smallest nonnegative integer m such that Lm(G) is spanning k-connected. Let l(G) = max{m : G has a divalent path of length m that is not both of length 2 and in a K3}, where a divalent path in G is a path whose interval vertices have degree two in G. In this paper, we prove that s3(G) ≤ l(G) + 6. The key proof to this result is that every connected 3-triangular graph is 2-collapsible.
منابع مشابه
The augmented Zagreb index, vertex connectivity and matching number of graphs
Let $Gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. Denote by $Upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. In the classes of graphs $Gamma_{n,kappa}$ and $Upsilon_{n,beta}$, the elements having maximum augmented Zagreb index are determined.
متن کاملThe maximal total irregularity of some connected graphs
The total irregularity of a graph G is defined as 〖irr〗_t (G)=1/2 ∑_(u,v∈V(G))▒〖|d_u-d_v |〗, where d_u denotes the degree of a vertex u∈V(G). In this paper by using the Gini index, we obtain the ordering of the total irregularity index for some classes of connected graphs, with the same number of vertices.
متن کاملCounting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملOn relation between the Kirchhoff index and number of spanning trees of graph
Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...
متن کاملNordhaus-Gaddum type results for the Harary index of graphs
The emph{Harary index} $H(G)$ of a connected graph $G$ is defined as $H(G)=sum_{u,vin V(G)}frac{1}{d_G(u,v)}$ where $d_G(u,v)$ is the distance between vertices $u$ and $v$ of $G$. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ ...
متن کاملSharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs
In $1994,$ degree distance of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the multiplicative version of degree distance and multiplicative ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Optim.
دوره 27 شماره
صفحات -
تاریخ انتشار 2014